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ABSTRACT

THE BOUNDARY INTEGRAL EQUATION METHO D USING VARIOUS 1

APPROXIMATION TECHN IQUES FOR PROBLEMS GOVERNE D BY 
-

LAPLACE’S EQUATION

The Boundary Integral Equation (BIE ) method is applied to boun-
dary value problems governed by Laplace ’s equation. In addition to
the piecewise constant approximation for boundary functions , two other
numerical approx imations , quadratic shape function and cubic spline
function representations , are adopted. Comparisons are discussed.
Topics for further research are indicated.
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CHAPTER ONE

INTRODUCTION

Probably the most familiar partial d ifferential equation of the

elliptic type is Laplace ’s equation:

v
2U = 0

where V
2 

~ ~
-j - + ~~~~~~~~~ + for Cartesian coordinates.

It plays an important role in the various branches of the engineering

and applied mathematics. It is satisfied , for example, if U is

(a) the temperature distribution under steady condition s in a r egion

of constant conductivity ;

(b) the warping function in the torsion of cylindrical bars;

(c) either the stream function or the velocity potential in the irrota-

t ional flow of an incompressible inviscid fluid ;

(d) any distribution of electric potential in a region of constant re-

sistivity;

(e) the distribution of magnetic potential in regions of constant per-

meability;

(f) either the real or imaginary part of any analytic function of a

complex variable;

Therefore , the treatment of solutions to boundary value problems for

this differential equation is interesting and important .

The methods of solution for such problems include analytical methods,

graphical methods , numerical methods and analogical methods. For

— 1 —

—- -~~~ — _ _ _ _ _



~~~~~~--~~~ -~~~~~~
.. 

~—~~~~~
-
~-

- - -

-2-

the analytical approach, the method of separation of variables is used

widely, where the general pattern yields different forms of solutions

depending upon the nature of the problem and the particular coordinate

systems involved. However , it is not alway s possible to separate vari-

ables [ 111. As to another analytical approach, the similarity method ,

the similarity transformation [2] can be used via group theory such

that Laplace ’ s equat ion will be reduced to an ordinary differential

equat ion easily. Howeve r , the capability of this transformation to pro-

perly carry over the boundary conditions to be compatible with the

transformed equation is not always guaranteed. In fact , even though

there are some other analytical approaches , e.g. , the conformal map-

ping method [ii, it turns out that the analytical approach is recom-

mended only for dealing with problems which are simple in geometry

and boundary conditions. When the geometry or boundary conditions

become complicated , the analytical approach will be too involved to be

practical.

For the graphical method [1], even with complex geometry, the

problem will be easy to handle if the boundary conditions are uniform

and normal derivatives of the potential function itself across the sur-

face are zero. However , it will bc~ awkward if the boundary conditions

involved are not uniform or there are non-zero normal derivatives of

the potential function across the surface. And even with simple

‘Numbers in brackets indicate the references listed at the end of
the text . 
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problems, the error of results can be very large without very great care

in drawing.

The analogical method [3] can be applied to complicated problems,

but sometimes the cost of construction of an analogue , obtaining the

solutions in the analogous system, and translating them back into the

original is tedious and not straightforward.

By conside ring all 4he advantages and disadvantages of the differ-

ent approaches mentioned above , it is found by comparison that the

numerical techn ique is generally the most desir able solut ion method,

since it is flexible and is even applicable to systems with variable phy-

sical propertie s and nonuniform boundary conditions. More important,

in recent years high-speed and large-capacity digital computers have

developed rapidly and have become especially suitable for complicated

and tedious numerical manipulations. Therefore the importance of the

numerical method has grown greatly and will undoubtedly continue to

grow at an increasing rate. Moreover, although the solution of prob-

lerns using numerical methods does not provide general solutions as

do the analytical methods, there are many situations for which numeri-

cal solutions provide the only approach which can be used. In fact , it

is often found that when a general solution is known , it proves to be

very difficult and tedious to translate into particular results for a

particular prob lem; therefore , we may say that not only are numerical

methods essential in problems which will not yield to any other method

of solution, but that also they are often the best for obtaining a

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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particular solution even when a general solution is available by analyti-

cal methods. Moreover , it is usually the particular solution which the

engineer and the physicist are interested in obtaining.

In the past, various numerical techniques have been applied to

solve Laplacian nroblems. Among them, finite difference methods

(FDM) and finite element methods (FEM) are popular, the practical

difficulties assoc iated with them being also well-known [4] [5]. How-

ever , by noticing that Laplace ’s equat ion is an ellipt ic type part ial

differential equation and therefore Laplacian problems are boundary

value problems, a basic question will be raised: Is it possible to find

a numerical technique which deals as much as possible only with the

bounda ry data instead of r ef er ring at the outset to the whole domain,

bounda ry and interior , as have been done in both FDM and FEM ?

The answer is affirmative. Specifically, the boundary integral equa-

tion method (BIE ) [6] is appropriat e for this s ituation. The major

feature of BIE is that unknown boundary data may be obtained by refer-

ence only to the boundary of the domain of interest without involving

the interior . In essence , a given problem is solved on the boundary

and the desired potential is evaluated at a desired interior point in

terms of the boundary data. Obviously , the dimensions of the problem

have been reduced by one. The great advantage to the analyst comes

from simplification of the mathematical modelling. Thereafter, in

this thesis , the BIE method will be applied to problems for Laplace ’s

equation. Different approximation techniques used to carry out the 

~~~~~~~~—~~~~~~~~--~~~~~~~~
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numerical analysis , having different features and advantages , will also

be discussed .

In Chapter 2 we formulate boundary value problems for Laplace ’s

equation , via the BIE , for two and three dimensional problems. Also

we indicate a basic numerical procedure used with the BIE .

In Chapter 3 we discuss improved approximat ion methods , I. e.

the quadratic shape function appr oximation for two and three dimen-

sional problems and the spline function approximation for two dimen-

sional problems . All procedures necessary to integrate the various

kernel functions to form the elements of the matrix of coefficients in

the resultant system of algebraic equations are presen~ed in three

Appendices. These procedures , though g iven in the Appendices to not

interrupt the flow of the formulative ideas , are not merely detail. In-

deed these procedures form the basis for actual numerical solutions as

iflus trated in section 3 of Chapter 3.

In Chapter 4 we offer some discussion and conclusions about the

BIE vs. other numerical methods and about the various approximation

methods used here. Some comments regarding extension of the pre-

sented methods fo r other classes of boundary value problems are also

given. 

---_ ..- ~~~~~~-~~~~-- _ _



- - -
~ 

~~~~~~~~~~~~~~~~~~~~ 
- —

~
--‘----— .;L ~~~_

.

CHAPTER TWO

BIE FORMULATION AND A BASIC NUMERICAL PROCEDURE

2.1  BIE FORMULATION

Consider the problem of determining a function u(x .) throughout a re-

gion R , i = 2 or 3 (for two-dimensional or three-dimensional regions , re-

spectively) ,  where u satisfies Laplace ’ s equat ion

2
V u = O  (x .) E R  (2 .1)

1.

and R is a simply or mult iply connected domain with boundary B. The

boundary conditions are either of the Dirichlet type , of the for m

u(x .) f (x .) (x .) E B
1 1

or the Neumann type , of the form

~u(x.)
= g(x.) (x.) E B

or the Churchill type , of the form

u(x .) = f(x .) (x .) € B
1 1 1. 1

~u(x.)
= g(x.) (x.) E B2

where B . B + B and -
~~~—— is the deriv~..tive in the direction of the out-1 2

ward normal to the boundary. Functions f(x .) and/o r g(x .) are prescribed

on the boundary B, and fo r a well-posed boundary value problem f(x .) and

g(x .) are not simultaneously prescribed over the same part of the boundary.

-6-
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Now for  any two sufficiently smooth and non-singular scalar functions

U and V in R , it is well known from Green ’ s theorem [7] that

R 
(U v

2
V - V v

2
U)dR = 

~B 
(U - V ) dB. (2. 2)

For clarity, we now consider the two-dimensional and three-dimensional

cases separately.

A. Two-Dimensional Case:

If we choose U = u(t) ,  the harmonic function we are try ing to determine,

and V = log r(t , w) which is the fundamental singular solution to Laplace ’s

equation in two dimensions (r(t , w) is the distance between any two point s in

the region),  we will find that Eq. (2 .2) will be invalid , because V will be

singular when t coincides w ith w. Therefore we construct a small circle

B’ with radius r ’ around t as shown in Fig . 2. 1,

w

Fig. 2.1
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and now Eq. (2. 2) will be valid for the altered region. In addition , because

both ~
2
U and v

2
V are always zero, Eq. (2.2)  can thus be written as

~bog r(t ,q)  
- log r(t ,q) ~ u(q ) 

] ds(q) = 0 (2 .3)

where ds is the differential segment of boundary B. By taking the limit of

the integrals over B’ as r’ — 0 , it is found [7] ,

u r n  
SB’ u(q) slog r’~ t ,q) r ’(t ,q)de( q) = -2~r u(t) (2 .4)

r -.0

urn  
SB’ 

log r ’(t ,q)  ‘~~~~ r’(t ,q)de (q) = 0 (2 .5)
r -‘0

Combining Eqs. (2.3) (2.4) (2 .5) gives an important relation which we will

deal with later , i.e. ,

u(t) = —i— 5~ 
[u(q) ~log r(t ,q) 

- log r(t ,q)  ~u(q) 
I ds (2 .6)

This relation expresse~ an arbitrary harmonic function in terms of its

boundary values and boundary values of its normal derivative.

However , as mentioned befor e, we know that for a well-posed boundary

value problem, only “hail” of the boundary data needed in Eq. (2. 6 ) will be

given; therefore it is obvious that Eq. (2. 6) is not a solution to a given

problem if we can not find a way to get the other half of the boundary data.

In fact , how to find the other hail of the boundary data is the basic idea of

the BIE method .

Let p be a point ly ing on the boundary B, then by drawing a small c ir-

cular bubble around p, there is a new boundary B’ + B” as shown:

~

--- -_ -~~~~~~~~~~~~~~
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I

(i n

Fig.. 2.2

According to the former derivation , we know that ,

U (p) = f ~~~~~~~~~~~ ~log r(p ,q) 
- log r (p , q)  ~u(q)] ds(q) (2.7)

By taking the limit of the integrals over B’ and B” as r’-’O it is found

[7] [s],

lirn 
5B” u(q) slog r’(p, q) r ’(p, q)de(q) = (2,, - ~ (p))u(p) (2.8)

r ’-O

lim 
SB” 

log r ’(p,q) ~~~~ r’(p,q)dO(q) = 0 (2.9)
r ’-’O

where ~ (p) is the 
inner angle of p. Note that by considering a uniform dis-

tribution of u over the region mentioned, ~ (p) can be expressed as ,

= 
SB 

~~~~~~~~ ds(q) (2.10)

By combining Eqs. (2.7) (2. 8) and (2. 9), we arrive at the basic relation-

ship of the BIE method,

u(p) = 
~~~

-

~

—-
~ 5~ 

[u(q) ~log r(p,g 1. 
- log r(p,q) ~~~~~ ] ds(q) (2 .11) 

-~ ~~~~~~~~~~
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Eq. (2. 11) gives us a linear relation between the boundary values of

~u(p)
the harmonic function u(p) and those of its normal derivative

The essential concept of the BIE method is therefore the following:

Specif y the know n boundary data in Eq. (2. 11) and solve , by one of the

numerical procedures to be discussed, for that part of the boundary

data not initially prescribed. Once all boundary data is known, u(t ) at

any po int t in R can be obtained by means of Eq. (2. 6).

B. Three-Dimensional Case:

Let U = u(t), be the harmonic function to be determined , and V = l/r

(t , w) which is the fundamental singular solution to Laplace ’s equation in

- 
three dimensions (r(t ,w) is the distance between any two point s in the

region). As in part A, Eq. (2.2) will be invalid for this region, so

construct a small sphere B’ w ith radius r ’ around t.

1~ ~~~~~~~~~~~ R’

Fig. 2.3 - 

. - .
~~~~~
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2 2 . .Because v U and v V will be zero for the region R-R , Eq. (2.2) can

be written for the three-dimensional case as

SB+B
IU
~~ ~~ r(t,

1
q) 

- 

r(t,q) 
~~~~ ] da(q) = 0 (2. 12)

where da is the differential area of boundary B. Taking the limit of the

integral over B’ as before, it is found that [7]

~ 5B’ 
u(q) 

~~~~~~ r ’(t
’
,q)  

- r’2 (t , q)d~~= 4,Tu (t) (2.13)

r~ 5B’ r’(t,q) ~~fl 
r’
2
(t,q)d~ = 0 (2. 14)

Combining Eqs. (2. 12) (2. 13) and (2. 14), we thus have

u(t) = 

~~~ 5B~ r(t ,q) - u(q) 
~~ r(t ,q) ] da(q ) (2. 15)

Similarly, let p be a point on the boundary B. Construct a small bub-

ble around p thus there will be a new boundary, B’+B” , with

Fig. 2. 4 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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u(p) = -
~~~~

— 

5B’+B” ~ r(p,q)  
~u(q) 

- u(q ) 
~n r( p,q) 1 da(q) (2. 16)

and

~~~~ 
5B~ 

u(q ) -

~~~~~ T’(~~ q) r’
2(p ,q)d$ (q ) = (a(p) - 4i~u(p) (2.17)

~~~~~~ 
5B” r ’(p,q) 

~~~~~~ r’2 (p,q)dB (q ) = 0 (2.18)

where a (p)~ the inne r solid angle of p. can be expressed as

u(p) = - 

5B ~~ ~~~q) da(q) (2.19) —

Combining Egs. (2 . 16) (2. 17) and (2. 18) we thus have

u(p) = a(p) 5B ~ r(p ,q)  - u(q) 
~ ~~~~~]da(q) (2. 20)

Now, with the full formulation of interior-and boundary-boundary

integral equations Eqs. (2. 6), (2.11) and (2.15), (2.20), for the two-

dimensional and three-dimensional Laplacian problems, respectively,

we can go further to the numerical procedure.

2. 2 A BASIC NUMERICAL PROCEDURE:

A Two-Dimensional Case:

The boundary B may be divided into N segments. Thus Eq. (2. 11)

can be wr itten as

1 , 
_ _   _ _ _  _ _ _ _ _11111. -_. .— _-_

~---_~--.. - .- . - - - - -~~~ -- -. — , —  - ~—.-- -~ —~~~~~ —- --- — —-a- _.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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-u(p) 
~~~ 5B . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ds(q)

= 

~~ l 5B . 
~~ (P) log r(p,q)d s(q) (2 .21)

As a f i rs t  approximation, each segment may be modelled as a straight

line, and the function u(q) and its normal der ivative u ( q ) over each

segment may be considered constant , i. e., as the value at the mid-

point of the segment.

£

t

LI /~
(P.t) /

R

~~ i1’I Pm

Fig . 2.5

Now , there will be N algebraic equations , each corresponding to

the boundary-boundary integral equation (2. 11) for point p at different

segments:

1’

_ _ _ _ _ _  - - -- --~~~ -— -.~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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N slog r(p.,q) N slog r(p.,q)
-u(p .)~~ 5B 

ds( q) u. ds(q)

u . log r(p .,q)ds(q) 1�i �N (2 .22)

where u~ and ~~ are , respectively , are approximate values of u and

its normal derivative over the jth segment. For conciseness , we can

express the N linear simultaneous algebraic equations system of Eq.

(2.22)  in matrix form:

[A] [U) = [B] ( U )  (2.23)

where~ [A] = [a..] 1�i,j�N

[B] = [b ..]

(U) = ( U )

3
~log r(p . ,q)  N ~log r(p .,q)

a .. = 

~ B. 
— ~ ds(q ) - 

~ 5B ~n
’ ds(q) (2.24)

3 k=l k

b .. = log r(p .,q)ds(q) (2.25)

Now , it is apparent that we can construct the [A] and [B] matrices

numerically from Eqs. (2.24), (2. 25) (Appendix 1). With the boun- -

dary data that is given , we can thus solve the Laplacian problem as

follows.

- ~~~~~~~~~~~~~ ;l~~~~~~~
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For the Dirichlet problem, we have

IC) = [B] [U i  (2.26)

where ~C) = [A] (U~1

For the Neumann problem, we have

[A] IU) = (C) where ~C1 = [B] f U )  (2. 27)

However, note that the Neumann type problems do not have unique solu-

tions, i .e . ,  the [A] matrix is singular. Therefor e, we should constrain

arbitrarily one value of [U) so as to uniquely obtain all the other values

of [U). An easy way to do so is to specify one u to be zero , and elimi-

nate the corresponding row and column in [A] and the corresponding ele- -

ment of IC) . V - ’  then deal w ith the reduced system , e. g.

[A*] (U*3 [0*) (2.28)

where {A*] = [a ..) l~ i , j �N-l

(u*) = (u.)

[C*3 = [c~~ —

U
N = O

Another way to do so is to specify arbitarily the value of one element of

[U), and assume the corresponding u to be unknown. We then solve the

whole system as a mixed problem as described below.

- ~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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For a mixed problem , we have

[A] [U *) = (C*) (2. 29)

where [A*) = [a’t.] l�i,j~N

[U *) = (wt )

(C*) = [B*] [U*) = [b*.] fu*.)

For a segment where u is defined,

a~ . b ..; b~. = a .. ; u~~~= u .; u*. = u .13 13 13 1.3 3 fl3 flj 3

and for a segment where u is defined,

a*. = a .. ; b~. = b.. ; u~ = u. ; u*. = u
13 13 13 13 3 3 113 fl3

Eq. (2. 26) Eq. (2.28) or Eq. (2.29) can be solved by various standard

methods. After application of the procedure mentioned above , the pre-

viously unknown boundary data is determined.

In terms of the discretized boundary and the entire boundary data, -

the interior field equation (2 .6)  can be thus written as

u(t) = f- [u .k1. - u k 2~] i�i~N (2.30)

= 
5B1 

slog 
~~‘~~ ds(q) (2.31)

= 
5B. 

log r(t ,q)ds( q) (2 .32)

L - -~~~~~~~--- - - -
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With Eqs. (2.30) (2. 3 1) and (2. 32) (Append ix 1), u(t), the solution of

the Laplacian problem concerned, can be calculated anywhere of in-

terest in the region R.

B. Three-Dimensional Case:

The boundary B may be divided into N segments. Thus Eq. (2. 20)

can be written as

-u( p)~~ 5B . ~~ r(p,q) da(q ) +  

~-l 
5B . u(q)~~~ r(p,q) da(q)

~~~ 
~ B . ~~~~~~~ r (p ,q)  da(q) (2 .33)

As a fi rst appr oximation each segment may be modelled as a plane

triangle , and the function u(q) and it ‘s normal derivative u (q) over

each segment may be considered constant , i. e. , as the value at the

centroid of the segment.

B A ’
‘~‘~N -‘~~~J I ’~~d-11 ’\ ‘I I I

~
( ~~~~~~ 

)
~ I.\ I  I I,~~~~~y -‘.

~_~
— I I

/ / —
__
~
-. I  I I

~/\ 7, — cct1~, 
;.---.

~ 
‘ 

- ( (

~~~~~~~~~~~ 1)
/ J

-I

Fig. 2.6

1. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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- -~~~~
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Similar to the two-dimensional case , there will then be N algebraic

equations, each corresponding to the boundary-boundary integral equa-

tion (2. 19) for point p at different  segments:

~ 5B. ~n 
~(p q)da(~) + u~ 5B ~~ r(p.,q) da(q)

U
nj 

r(p.,q)da(q) l�i�N (2.34)
j l  3

In matrix form, Eq. (2. 34) may be written as

[A] [U) = [B] [U) (2.35)

where [A] = [a ..] l~ i, j~ N

[U) = (u .)

[B] = [b ..]

( U )  = f u )
3

~~ r(p q) da(q) - 
~~~~ 

~~~ ~~ k ~~ r(p .,q) da(q) (2 .36)

= 
5B

5 
r(p,q) da(q) (2.37)

Once the [A] and [B] matrices have been calculated numerically

(Append ix 1) with hail of the boundary data prescribed , the other half

of the boundary data can be obtained numerically us ing the same proce-

dures as in the two-dimensional case for Dirichlet , Neumann or mixed 

__________ 
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type problems.

With the entire boundary data and the discretized boundary , the in-

terior -boundary integral equation (2. 15) can be expressed as

u(t) =~~~~
— [ u k 2. - u .k 1.] l�i �N (2 .38)

k 11 = 
5B . ~n r( t ,q)  da(q) (2 .39)

k2~ = 
5B . r(t ,q)  da(q) (2.40)

As in the two-dimensional case , u(t) can be obtained anywhere of in-

terest in the re gion R , with Eqs . (2.3 9) and (2. 40) (Appendix 1).
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CHAPTER III

IMPROVED APPROXIMATION METHODS

In the preceding chapter , for simplicity, we approximated the

funct ion u (q) and its normal derivative u (q) with constants over each

segment. Obvious ly, in many cases this will be a very crud e approxi- 
- 

-

mation particularly becaus e of discontinuities .  Therefore , improved

approximation methods are desirable . There are various classes of

approximating functions which could be used , for  example , polynomials ,

trigonometric functions , exponentials , and rational functions.  The most

widely used approximating functions for  well understood reasons are the

polynomials which will als o be our choice in this work.

As a f i r s t  step, we will discuss what polynomials p(t) are good

approximations to the real function f ( t ) ,  i. e. , u(q) and U (q) in our

s ituation. Before that , we should make clear what is meant by a “good

approx imation” here.

Definition:

Let f E C
n

(a , b) and define the norm 
~ 

o f f  as

l~~~ 
= 11 ~ 11÷ f’ + 11 ~ “ ~ + + 11 f~~~II

where

~ f U)~ = max f~~’(t)
t E ( a ,b)

A function g belonging to C11(a , b) is a good approximation to f , provided

~ f - g ri � E for a sufficiently small E.

-20- 
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From the Weier s t rass  approx imation theorem [9] , which say s for

given any interval (a , b), any real number E > 0 , and any real-valued

funct ion f E C
11

(a , b), there exists a polynomial p(t) such that ~ f ( t )  -

p(t) ~ L E for  all t in (a , b) ,  we know that there do exist polynomials,

p(t ) ,  which can be good approximations to the real function , f ( t ) .  The

polynomial we are interested in is the inte rpolating polynomial.

Let a = t 0L.t 1Lt 2L .. .Lt = b be n + 1 distinct points on a closed

interval (a , b) on a real axis and let f ( t )  be a real function defined at

these points. It is obvious that there exist infinitely many polynomials

p(t) which ca:.~ approximate f( t )  and interpolate f( t )  at the points ,

t 0, t 1, t2, t 3, .. . t , where

p(t .) = f( t .) 0�i�n

However , there is only one polynomial of degree � n which interpolate s

f( t )  at these n + 1 distinct points . In terms of the Lagrange form , it

will be

p(t) = f(t
k

)l
k

(t) (3. 1)

where

n
lk~

t) 
i~~O ~ _± (3. 2)

i~ k k I

and

1 (t .) = & . 0�j �n
k j kj 

-

lk
(t) defined by (3 .2) is called a Lagrange polynomial and is also known

as a “shape function”.

— ------..------- - -- - - - 
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Although Lagrange polynomials are very easy to construct , an ob-

jection to this type of interpolating polynomial is that when the number

of interpolating points becomes large , with a consequent high degree of

Lagrange polynomial, calculation and evaluation of the interpolating

polynomials become costly and , due to the propagation of e r rors , un-

reliable. Another more seriou s objection to the use of this interpolat-

ing polynomial of hig h deg ree is the fact that it may well increase the

interpolating error .  This can be easily seen by examining the error

estimate for Lagrange polynomial p(t) which interpolates f( t )  at a =

t
0Lt 1L ... Lt  = b. It is found [io] that , for f E C~~~

’(a ,b)

I - 

~~~(n+ l)  

~~~~I P

for f E C
k

(a , b) 0�k �n

ii f - p II ~ [1  + ( j~~ )
11
] g~~(f~ n)

where

h = max (t . - t .)i+l iO�i�n- I

*h = mm (t . - t .)
m+ l m0�t�n- 1

b - a6w(f , Zn ) k=0

= 
3(b - a)~~f~~ k=l

6~~k - 
k(b - a)

k f (k)~1 lkk�n
(k -
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We can see then that the case o f f  E Ct
~~~(a , b), if ~ ~~~~~~ incr eases

sharply as n becomes large, reducing the size of Fm may prove to be of

no help even if the knots are spaced optimally, e.g. [11]

1~ ~ - p 11 � ~~~~~~~~~Jt 2 ( b - a
( n + l )  4

where , the choice of Tchebycheff points for the interval (a ,b) to mini-

mize the approximating error are

t . ~ [b + a - (b - a)coS[~~~~
+

~
l
1)

TT]] O~ j �n

For  f ~ C
k (a , b) (0�k �n) case , [ 1  + (Zh/h *) n

l may grow too fast and

)u t g  row the opposite effect due to (b - a ) / n  f or  k = 0 and ((b - a) /n ) k

fo r  l�k�n.

of course , e r ror  estimates are sometime s just pessimistic; how-

ever , from them we do find that there exists a way to guarantee the

“smaller ’ e r ror , even for  small n. That way is to make the interval

(a , b) small, and this leads to the “piecewise interpolating polynomial”

idea. Based on this idea , we will go on to the following improved

approximations.

3.1 SHAPE FUNCTIO N APPROXIMATION

A. Two-Dimensional Case:

As mentioned above , in order to have convergence as the number

of segments increases, it would be necessary to use piecewise approxi-

mating polynomials . Within each subinterval , the shape function e. g . ,

a Lagrange polynomial, can be constructed linearly, quadraticaily,

_
~- - - — - ~~~~

--~~~~~~~~~~~
- - -  .-

~~~~~~~~~~~~~~~~~~~~~~~~
-

~~~
- -

~~~ -
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cubically, etc. The choice of degree depend s on whethe r we want

economic advantage or other advantages which can be achieved by in-

creasing the number of degrees of freedom. Here we wiil choose the

quadratic shape function to illustrate and apply the BIE method.

When we approximate the functions u(q) and u (q) by shape func-

tions in terms of Lagrange polynomials , i.e.

u(q) = u(~~~)l~~(c)

u (q) =

over each segment , where l�k�3 for the quadratic Lagrange polynomial,

and substitute into the two-dimensional boundary-boundary integral

equation (2. 11), it becomes

a(p)u(p) =~~~~ ~~ u(q .) l .(q) ~~~~ ~~~~~~ ds(q)

- 

i = lj = l

u (q.) 1.(q)log r (p ,q)ds(q)

i=l j = l

However, it is found that unless the boundary segment is a straight

line or we are going to model the curved boundary segments as straight

lines as we did in Chapter 2 , it will be difficult to perform the approxi-

mate integration over each segment if we do not know the geometric

expression for the boundary, which is frequent ly the case. In turn ,

this will be a drawback if we want to use a computer-aided program

to make the geometric partition of the boundary so as to gain efficiency.

Therefore , a parametric transformation should be used initially to

_________ 4
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transform the g iven arbitrary boundary segment into a standard bound-

ar y segment to which a rule of appr oximation integration , like the Gaus-

sian quadrature we shall adopt , can be readily applied. In fact , this

can be done by using the so-called “isoparametric transformation” [12] ,

where we use the shape functions used to approx imate the functions to

also appr oximate the boundary geometry.

For this purpose, let the standard boundary segment be described

by the curvilinear coordinat e e as shov n in Fig . 3. 1. The quadratic

shape functions related to this coordinate are

N
2

(e) 1 - e2 (3. 3)

N
3(e) = ~e + ~e2

I

Fig. 3.1

The x and y coordinates and functions u(q), u (q) can thus be appr oxi-

mated as

_ _ _ _  ---  
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a ax(e) = N (e)x

y(e) = N a(e)ya (3.4)

au ( e ) = I \  (e)u

u (e) = N a( e )u ~ (3.5)

where xa, y~ u~ ua are the function values defined at the node s of

the boundary, and l�a�3 for the quadratic case. It is also found that

ds(q(e)) = J(e)de (3 .6)

where

+ (...~xj
2

j(dr
(e) xa) + (

dN~Le)ya) (3 7)

Before we apply these shape function expressions to the boundary-

and interior-boundary integral equations , we will further look at the

boundary-boundary integral equations. It is found that, by using Eq.

(2 .11) Eq. (2 . 10) can be written as

- u(p)] ~~~~~~~~~~~~~~~~ ds(q) = 5~ 
U (q)log r(p,q)ds(q) (3 .8)

-
‘ Now by substituting Eqs. (3.5) (3 .6)  into Eq. (3 .8) for each specific

point p, Eq. (3.8) can be formulated as

- —--—-— --——--—.— — ---——- - --- — .-- ---- -~ .— - -- -- -  — - —-——----- - ---------- ~~~~~~~~~ ,.- ,~~ ‘- ~~~——. -
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N 3 
~(a) ~log r(p . ,q(e))y 

~~ 

N~~(~ ) 1. J(e)de l~ i,j(a)-�2N

j= l a l  B~

N slog r (p . ,q (e) )
- u(p.) 

~n 
J(e)de

j = 1 
~

Na(e)log r(p.,q(e))J(e)de (3.9)

j = l  a=l

where N is the number of segments and B~ is the ~th 
standard bou ndary

segment with limit s (- 1 , 1). In short , Eq. (3.9)  can be expressed as

~ [~~ u~~~ aa. - u(p.)a~. ]
j 1 ~~~ -

N 3  .

= ~~ ~~~~~~~~ (3 . 10)
j = l  a 1

Since au., a’., b~ . can be calculated numerically (Append ix 2), we

can thus form Eq. (3. 10) in matrix form as

[A] (u) = [B1 [ U )  (3.1 1)

Thus, for either Dirichiet or Neumann or mixed type problems the un-

known half of the boundar y data can be obtained by the procedure de-

scribed in Sec. 2.2.

With all these boundar y data , um and ~
m, 1�m� 2 N , the two-di-

rnensional Laplacian problem can thus be solved by the use of the

Interior-boundary integral equation (2. 6),  wh ich can be expr essed as 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~ - --- --- - - -
~~~ - - - -
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u( t) = ~~~~ [u ~~~ k~~. - ~~~~~~~~~ (3. 12)
j = 1 a=1

where

k~~. 5~ 
Na(e) slog r(t ,q(e))  de (3 .13)

k~~. = Na(e)lo g r(t , q(e))J(e)de (3.14)

can be calculated numerically (Append ix 2).

B. Three-Dimensional Case:

Unlike the two-dimensional case , here we deal with the integration

over curved surface boundaries where a boundary segment could be a

curvilinear triangle, quadrilateral ... etc . Here the boundary seg-

ment we will use will be a quadrilateral. Similar to the two-dimen-

sional case , in order to perform the numerical integration and the

automatic mesh generat ion , the parametric transformation is used.

Also , we let B~ = (-1 , 1)x( -1, 1), the curvilinear quadrilateral with

curvilinear coord inates e, f , be the standard boundary segment as

shown in Fig. 3.2.

I

_______________________________________________________________ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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0

~~ f)

Fig. 3.2

Based upon this standard boundary segment , we could easily con-

struct the two-dimensional shape functions by forming the tensor pro-

duc t of the appropriate one-dimensional Lagrangian shape functions

which we used before. However , due to the larger number of degrees

of freedom involved we will not proceed this way. Instead , we will

choose the Serendipity ’ s elements [13] for our usage , where , for the

biquadratic approximation, the shape functions can be expressed as

Na(e , f)  = ~~(1 + e0)( l  + f
0

)(e
0 + f

0 
- 1) i�a~~4

Na(C ,f) = ~ (1 + e
0

) (1 - f 2
) a= 5, 7

Na(e,f)  = ~ (l - e
2
) (1 + f~) a= 6, 8 (3. 15)

where
- ae0 = e e

f f f a 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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For the isoparametric transformation, the x and y and z geometric co-

ordina tes and functions u(q), u ( q) can be approximated as

x(e , f )  = N
a(e , f)x a

y(e ,f) Na(e ,f)ya

z(e,f)  = Na (e , f)z a (3. 16)

a a
u(e ,f ) = N (e , f )u

u ( e , f) = Na(e , f)u ~ (3. 17) 
-

a a a a awhere x , y , z , u , u , as before , are the functIon values defined at

the nodes of the boundary nodes shown as Fig. 3.2. Also, it is fou nd

that (Appendix 2).

da(q(e , f ) )  = J(e ,f)de dI (3. 18)

where

J(e , f) = J 9
2 

+ N~
2 

+ N? (3. 19)

= (a
283 

- a3B2
)

N~ = (a3B 1 - a1B 3)

= (a
1

B2 
- a2 8i)

~ 
a1 ~ a31 r ~N

a(e,fL a a a[x , y , z ]
81 B~ B 3 J (

~ _ _ _ _ _ _ _ _ _
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Similar to the two-dimensional case , it is found that by using Eq.

(2 . 19), Eq. (2. 20) can be rewritten as

{u(q) - u(p)] ~~~~
— ~~~~~da( q) = u (q) ~(~~ q) da(~ ) (3. 20)

By subs tituting Eqs. (3. 17), (3. 18) int o Eq. (3. 20) for each specific

point p. Eq. (3 .2 0) can be expres sed as

ui~~ 5B’ 
Na

(e , f) 
~n r (p . ,q(e , f ) )~~~~’~~~~ 

df

j = 1 a=l

- u(p .) 5 r (p .,q(e , f ) )  
J(e , f)de df 1~ i ,j(a) �NN

j = 1 j 1

= N~ (~ , f)  r(p . ,q(e , f ) )  
J(e , f)de df (3. 21)

j = l a= l j 1.

where N is the number of segments , NN is the total number of nodes ,

and B~ is the ~th standard boundary segment with limits (-1 , 1)x(-l, 1). -

Eq. (3. 21) can be expressed in the abbreviated form

N 
~ ~~~~~~~ a~ . - u(p.)a~ . I = ~~ ~~~~~~~ (3.22)

j = 1 a= 1 3 l  a=l

Af ter a’ ., a~~, ba. have been calculated numer ically (Append ix 2).

Eq. (3. 22) can be written in matrix form as

[A] [U3= [B] (U
11

) (3 .23)

which can be solved as described previously. 

~ — -- -- -~~~~~~~~~~ -~~~- ---~~~~~~— - - -— ~~ -~~~~~~~~ ---~~~~~~~ - - -_  - - -  - ~~~~~~~~~~~~~~~~~~~~~~~~~
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When all the bounda ry data have been obtained , the three-dimen-

sional Laplacian problem can then be solved by use of the interior-

boundary in tegral equation (2 . 15)

u(t) = ~~~
— ~~ ~ ~~~~~~~~~ - U3(a)k

1~ 
] (3.24)

j 1 a= 1

where

k~~. = 
5B’. 

Na(C , f)  
~n r(t , q(e , f) )  J(e , f)de dl (3 .25)

k~~. = 5 Na(e , f )  r( t ,q(e , f ) )  
J(e ,f)de df (3 .2 6)

can be calc u lated numer ically (Appendix 2).

3.2 SPLINE FUNCTION APPROXIMATION

By examining the shape function approximations used in last sec-

tion , it is found that both the Lag range or the Serendipity type , guaran-

tee continuity of only the function itself at the “knots ” , where a “knot”

is a point at which the piecewise-smooth polynomials are joined to-

gether. Consider the one-dimensional, piecewise-quadratic shape

function of Lagrange ’ s family , for example , as shown in Fig. 3. 3 ,

where l~(t) is the quadratic Lagrange ’ s polynomial ove r the ~th in-

terval.

_  _ _ _  - - -~~~~~~~~~~~~~~~~ —-- -~~~~~~~~~~~~ ,- - — 
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~z3

I I II I I
I I I

I I I
ta ~t t 

•t3 t4 ts t 6 j t ,.,

f(t)~~ L c t )~~~.f~ t ) .R1Ct) ~~~~~~~~~~~~~~

Fig . 3. 3

It has been noticed that there exist sharp corners at these knots

(t 2, t
4

, t6 , . . .)  due to the lack of differentiability of L’(t) at the knots.

Of course , if the approximated function is smooth, then the drawback

of lack of smoothness will cause trouble when the solutions found num-

erically have to be differentiated at the knots. Therefore, it may be

de sirable to use appr oximating functions which are not only continuous

at the knots but also have continuous derivatives at the knots.

There are various ways to achieve the smoothness requirements

for the piecewise polynomials . One way is to use values of derivatives

as well as the function itself . However , if spline fu nctions are us ed ,

these requirements can be met by using only value s of the function it-

self [14], [is], [16], [17]. As Schoenberg pointed out , the fund amental

_ _  ~~~~~~~~~~~~~ -— --_~~-~~~~~~~~ _ _ _ _ _ _
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properties of sp line funct ions , as a class of piecewise polynomial

funct ions with continuity properties of the function itself and its deriva-

tive s, are simple and the xrathematics involved elementary. In recent

years , there have been numerous works with re gard to the development

of the theory of approximation by splines.

Here , we will look at the cubic B-spline f irs t .  It is known as the

basic spline , because Schoenberg has proved that every cubic spline

can be wri t ten  as a linear combination of B-sp lines. By considering

a partition over the interval a = t
1 

�t2 ~ t 3 
�.. .  �t = b with evenly

spaced subintervals , the B-sp line , B .( t ) ,  is defined as

- (t - t . ) 3 
~ € (t . , t .i-2 i-i

h
3 

+ 3h2 (t - t . 1 ) + 3h(t - t . 1 )
2 

- 3(t -

t E (t . ,t.)
1— 1 1

B .(t)  = h
3 

+ 3h
2

(t .+1 
- t) + 3h(t .+ 1 

- t) 2 - 3(t - t) 3

t € (t ., t . )
1 1+1

(t . 2  - t) 3 t E (t .+i~
t . z )

0 otherwise (3 .27)

This function is represented graphically in Fig . 3. 4.
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ti_s t~ 
t~t_..

Fig . 3. 4

As mentioned before , any cubic spline s(t) can be expressed as a

linear combination of cubic B spline s (cf. Fig. 3. 5):

n+ 1
s(t) = a .B .(t) (3. 28)

where  a and a , the two additional flexib le degrees of freedom, are
0 n+ 1

caused by the not strictl y local property of B splines.

B.-, 8, Bi B~ B~ ~~~ Be., Bs Bøi s Li-u.

t_1 to t~ ti tJ t4 ii,..., t
il l tip4 t ø tt,s,1 tm,I

(a) (b)

Fig . 3.5
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To determine all the coefficient s a ., besides the original data , e. g.

s(t .) ,  1�i�n , a choice of the two extra degrees of freedom should be

made , e . g . ,  s’(t ) = f’ (t ),  s’(t ) = f’ (t ) or s”(t ) f ’’(t  ) s”(t ) = f ’’(t1 1 n n 1 1 n n

etc. , as the extreme boundary condition , the periodic case as shown in

Fig. 3 .6.

9/  i
!i is

‘I

~~ 
~~ t•

il~~f ~~~~~

Fig . 3.6

It is found that Eq. (3. 28) can be reduced to

s(t) = 

i~~l 
a .B (t)

due to the periodic properties, i. e. , t0 t , t~~~1 
= t

1 and B0
(t) = B (t) .

B~~~1
(t) = B

1
(t).

- 

- 

For our purpose , we will use the periodic spline with equal intervals.

Therefore , in terms of cubic B splines the potential function u(q ) and its

normal derivative u (q) for  a specific closed boundary can be approxi-

mated as

L
-- - - -----.------

~

--

~

—-- - - --_ - —~~
- —
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u(s )  = e.B(s - s.)

u (s) =~~~ f .B(s - s .) (3 .29 )
11 3 3

where s is the curvilinear coordinate of the specific closed boundary:

- 0 — - 0  Zh ( s - s .)
3

B (s - s .) (2 - (s - s ,)1 j 
_ _ _ _

h

h �(s - s.)�Zh

3(s - s .) ( s — s .)
B(s — s .) = - B2 (s — s .) = - ( 2 -  

h 
1 — 4(1 — h 

~

O�(s -

B(s. - s) 
- 

- B(s . - s) s - s~�O (3.30)

and h is the length of the eq ual intervals between nodes.

Substituting Eq. (3 .29)  into the two-dimensional boundary-boundary

integral equaticn (2 . 11) results in

N N ~1og r (p ., q ( s ) )
a(p ) 

~ 
e.B(p. - s .) - 

5B 
~ e.B( q( s)  - s .) ds

j = l

=  LB(q( s )  - s .)log r (p . ,q ( s ) )ds .  (3. 31)

_ _  -- -- - -_ _ _ _ _ _ _ _ _ _  - - - - -~~ - - ~~~ ~~~ - -~~~—__
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After careful rearrangement, it is found that Eq. (3. 31) can be ex-

pressed in the matrix form

[A] [E) = [B] [F) (3 .32)

where

- 

[A] = [a ..]; (E) = (e . )  ; [B] = [b . .]; fF) =

a . .  = 4ir + . . . when B. = B .
13 1) 1 3

~ + , . .  when 5. and B . are neigh-
13 bor interval

a . .  otherwise
13

Mog r (p . ,q ( s ) )
B ( S - S .) ds

~B . 
2 j

3

Mog r (p ., q ( s ) )
- c B ( s - s .) 

1 ds
1 ~fl

Mog r (p .,q(s ) )
- 5 B ~~

(s . - s) ~

Mog r(p.,q(s))
- 

5B 
B
1

(s . - s) ds (3. 33)

j -2

hh~ ~~~ —_ - - —- - — - - - - -— -. _ _ _ _
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b . .  = - 

SB 2 
- s.)log r (p .,q(s))ds

— 

5B. 
B 1

(s — s.)log r (p .,q (s ) )ds

3+ 1

- - B2 (s . — s)log

— ~~~~~ B
1

(s . - s)Iog r (p . ,q(s))ds  (3 .34)

j -2

i. .,  b..  can be calculated numerically (Append ix 3).

From Eqs. (3 .24) ,  (3.30),  we know that

= [D] 1E)

[u )  = [D] ~F)

where

4 1 00 1

1 4 0 0  0

0 1 4 1  . .. 0
[D] = 0 0 1 4 . . . 0

1 0 0 0  14

Therefore, Eq. (3. 32) can be rewritten as

_  _ _ _  -- _ --~~~~~~~~~~~~~~~~~ - - --_ _ _ _ _ _ _ _ _ _ _
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[A] [D]~~ [U) = [B] [D] ’ [ U )

i.e.

[A] [U) = [~~] ( U )  (3 .35)

Then , by the similar procedure s mentioned in Sec. 2.2 , all the neces-

— sary boundary data can be obtained. It should be pointed out that a

mult iply connected reg ion can also be handled by generalizing the

procedure mentioned above.

After  all the u~ and u have been determined , the two-dimen-
3 n

j
sional Laplac iari prob lem can be solved by subst itut ing Eq. (3 .29) into

the twq-dimensional interior-boundary integral equation (2. 6) as

u ( t )  = ~ 5B 
~~ e .B(q(s)  - s .) Mog r(t , q ( s ) )  

ds

- 

SB J
~~l

h
j
B

~~~
5 - s .)log r(t ,q(s))ds] (3. 36)

i.e.

u(t) = ~~~
— [k 1. e . — k2 .f .] (3. 37)

where

~ 

- -  ~~
- ‘- - --- -------- - - - -

~~~~~~~~~~~~~~~~~~~~~~~~~~
-
~~~

. . - ----.--—-- --.-—---—-
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k . = B (s - s .) Mog r( t , q( s))  
ds

l j 
~B . 2 ~~t1

3

+ B (s — s .) 
Mog r(t ,q ( s ) )  ds

~B. 
1 3

3+1

+ 
SB. 1

2 J 
- s) Mog r(t , q ( s ) )  

ds

÷ B (s . — s) Mog r( t , q ( s ) )  ds (3. 38)1 3 ~fl

3-2

k2. = 5 B2
(s - s .)log r(t ,q ( s ) )ds

+ B~(s — s .)log r(t ,q(s) )ds

~B.3+1

+ 5 B2 (s . - s)log r(t , q(s) )ds

j — 1

+ 5 B 1(s . — s)log r( t , q(s))ds (3.39)
B .j — 1

can be calculated numerically (Appendix 3), and [e.) and [f .1 can be

obtained via

-- - — -— - -  - - - - -- ~~~~~~~~~~~~ --
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fe .) = [DF 1 [u .)

= [D]~~ [U
n .

)

I

_ _ _ _ _ _ _ _ _  __  — _ _ -- .--- -_~~~~~ A
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3 .3  TEST PROBLEMS :

3. 3. 1 Two-Dimensional Case:

(a) Consider the temperature distribution along the boundary of a cir-

cular disk (see Fig . 3.7)  to be maintained as u(r , 8) = sin 8.

- j4~~~~

FIg . 3. 7

The exact analytical solution is u(r , 8) ( r/ r ) sin ~ and it is desired to

solve for the boundary heat f lux by using the BIE method with piecewise-

constant approximation, quadratic shape function approximation and cubic

spline function approximation. Comparisons are listed in the table below.

Approximation Boundary Average Computing
method point s used relative er ror  time

10 8.61% 0.25 sec.
Constant 20 2.04% 0.64 sec.

40 0. 49% 0.84 sec.
______________  

80 0.11% 3.25 sec.
10 0. 35% 0.21 sec.

Quadratic 20 ~ 
p~% 1.. 18 sec.

shape function 40 0.04% 4.13 sec.
10 i . i 3% 0. 94 sec.Cubic 20 ______ 0.Ll% 3. 68 sec.spline function 40 0.0 1% 3.95 sec. 

~~-~~- - - - -~~~~— _ - - - - ~~~~~~~~~~~~ - ~~~~~~~~~~~~~ --
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All the relative er rors  listed in Sec. 3. 3 are taken as the absolute value

of the r at io of the difference between the analytical solution and numerical

solution to the ana lytical solution. Regarding the boundary solutions, all

the relative errors at each boundary point are then averaged.

Unless otherwise ment ioned , the Gaussian points (Appendix 2) used in

Sec. 3. 3 are 4 and 4 x 4 for  the quadratic shape function approximation and

biq uadratic shape function approximation, respectively.

(b) Consider a circular ring, a multi-connected region , with di f ferent  -

constant temperatures along the inner and outer boundaries , as shown in

Fig . 3.8.
Y

Ui

z

LI0

c ~~~~~

Fig . 3.8

The exact analytical solution is u(r) = u . + (u - u .) in ( r fr .) / l n  (r /r .).
1 0 1 1 0 1

We solve for the boundary heat flux by us ing the BIE method with piecewise

constant approximation , quadratic shape function approximation and cubic

spline function approximation. The comparisons are listed in the table

below:

_ _ _
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Approximation Boundary Average Computing
method points used relative error time

Constant 20 2.3% 0.6 sec.

Q uadratic 20 0. 1% 1. 2 sec.shape function

Cubic 20 1. 6% 1.4 sec.spline function

(c) Consider a rectangle, kept at different  constant temperatures on two

opposite surfaces and insulated on the othe r two opposite sides

- :7

0

‘I.,

bc uo ___________________ _____

2:

L~~:O

Fig . 3 .9

The exact analytical solution is u = (u2 + u 1)/2  + (u 2 
- u

1
)x/a.

It is desired to solve , by using piecewise constant approx imation and quad-

ratic shape function approximation, partly for the boundary temperatures and

partly for the heat flux and then solve for some interior temperatures. Re-

sults are shown in the tables below :

~ 

- 

--
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Piecewise Constant App rox imation
(16 boundary points used)

(0. 43 sec. computing time)

Interior .Analytical Numerical  Re lativeCoordinates
Solution Solution Er ro rx y

6 . 0  0 0.2000 0.1965 1.8%

o o 0. 5000 0 .5000 0
-4.0 3. 0 0. 7000 0. 7005 0. 1%

Quadratic Shape F unction Approximation
(16 boundary point s used)

(1.06 sec. computing time)

Interior .Analyt ical Numerical  RelativeCoordinates .Solution Solution Errorx y

6.0 0 0. 2000 0 .1983 0. 8%

0 0 0.5000 0. 4989 0. 2%

-4.0  3 .0 0.7000 0.7011 0. 1%

— —_ ..—— -, —- -—
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3.3.2 Three-Dimens ional Case:

(a) Cons ider a cube , kept at different  constant temperatures on 2 oppo-

site surfaces  with temperature varied l ineary along the other four adjacent

surfaces , according to u - u2 ÷ (u
1 

- u2 )x/a  as shown in Fig . 3. 10.

tz

I ç
UIJ’z

Fig . 3.10

We solve for the boundary heat fl ux by using the BIE method with piecewise

constant approximation and biquadratic shape function approximation. The

comparisons are  listed below .

Approximation Boundary Average . Computing
points used relative er ror  tim e

Constant 24 7.83% 1.9 sec.

Biquadratic 20 . 0 .01% 3.4 sec.shape function 

~~~~~~ _ — -_ -~~~~~~_~~~~~~- -_ _ _ _ _ _  -
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(b) Consider a plate with a hole at the center and all the temperature

distr ibut ion u = (u. - 
(

U. - U~~ 
+ 

U~ - u

i ~ (r ./ r i /  \~~ (r ./ r  )

C Ei

ro )

_ _
~~~~~~~~~~~~~~~~~~~~~~

Fig . 3 .11

After solving for  the boundary heat flux by using BIE method with biqua-

quadratic shape function approximation for different Gaussian points ,

- 4 and 5, the comparisons are listed below: 
-

Quadratic Shape Function Approximation

( 120 Boundary points used)

Gaussian Average Computing
points used relative error  time

4 5.7% 4 4 s e c.

5 1. 2% 6 2 sec.

a - _ _ _  —— -
~ 

—_ - ~~~~~~~~~~~~ - ~~ ; ~~~~~~~~~~~~~~~~~~
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(c) Consider  a solid sp here , as ~-hown in Fig.  3. 12, with the axisym-

metrical, surface tempe r ature distribution u(r , 9 )  = cos 9

/ ~/ ro~j~~ \
l \  I / ~~~~ I I

\ -~ ~.. I I
V I ~ ‘—~ I I

% \ I  ~‘ I 1

I

Fig . 3 .12

The exact analytical solution is u (r , 9)  = r / r  cos 9. It is desired to

solve , by using quadratic shape func t ion  approximation, for  the boundary

heat flux , and then solve for some inter ior  temperatures .  Results  are giv-

en in the following table:

L -~~~— - -~~~~~~~~~~~ -- ——
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Quadratic Shape Function Approximation
(32 boundary points used)
(4 . 5 sec. computing time )

Inter ior  .
. Analytical Numerical  Re lativeCoordinates

Solution Solution E r ro r
x z 

_ _ _ _ _ _ _  _ _ _ _ _ _ _ _  _ _ _ _ _ _

7.0 7.0 0 0 .0000 0. 0000

1. 0 2 .0  3 .0 0.3000 0. 2976 0.8%

4.0 4.0 4 .0 0. 4000 0 .3948 1. 3%

5.0 4.0 5.0 0.5000 0.5035 0.7% 

~~- --~~~~ __- - ---_ - - - -—--~~- - __ - -— -- ~~~~ -- - -
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CHAPTER FOUR

DISCUSSION AND CONC LUSION

The purpose of the work in this thesis is two-fold , viz. ,

(1) to app ly the BIE method to Laplacian problems:

(2) to supply various numerical approximations in dealing with such

applications.

For the f i rs t  purpose , it is obvious that the BLE method has a basic

advantage over other numerical methods like the FDM and FEM , due to

the reduction of dimension by one . Thus the efforts  in the numerical

modelling and preparing the geometrical data have been greatly de-

creased , especially when the ratio of the surface area to the volume of

the domain concerned is relatively low. However , there are some draw-

backs with the BIE , e . g . ,

(1) it is app licable only to linear problems ;

(2) the coefficient  matrix involved , i. e.,  [A] and [B] shown in

Chapter 2 arid 3, is a full matrix, therefore not like the banded

and sparse matrix involved in some other numerical methods ,

like FEM . This is an undesirable computational feature.

However , despite these drawbacks , the BIE is still worthy to be rec-

omm ended as a useful numerical method to deal w ith boundary value

problems.

As to the second purpose , it is clear that one can riot say in advance

which numerical appr oximation is superior to the others. The term

-51-
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“improved” used in Chapter 3 simply means the following :

( 1) Instead of the piecewise step function approximation, we intro-

duce the higher degree , quad r atic , piecewise interpolating poly-

nomial to approximate the boundary function. From the error

estimate it can be shown that , in general, the latter approxima-

tion will have better accuracy than the former with the same

mesh. Als o, by us ing the isoparametric transformation as ex-

plained in Chapter 3. 1, this approximation method is made

more useful.

(2) When cons iderab le smoothness of the representation is neces-

sary or desirab le , we fur ther  introduce the sp line function ap-

prox imation. Here , unlike the former two approximations , con-

tinuity of the derivatives of the approximation function at the

knots are also assured.

- j Besides these two facts , there are various other factors which must be

taken into consideration in order to say which approximation method is

improved or not. Specifically, consider the following:

(1) From the error analysis for the piecewise quadratic Lagrange ’ s

polynomial approximation [ i i ] ,  it is found that

ii ‘ /

— p2 11 � 12 
—

where f is the function to be approximated , p2 is the p iecewise

quadratic Lagrange ’ s interpolating polynomial, and h is the mesh

length interval between nodes. An error  analysis for the cubic 

-_ —  _— — —— -_  - 
- -
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sp line function approximation [zi] leads to

II (4) 4
f 

i f  I t h
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where 53 is the cubic sp line function.  We can pr edict that the

cubic spline function appr oximation will have the faste r conve r-

gent speed as the mesh length h decreases.

(2) In order to achieve the same accuracy, the quadratic shape

function approximation may require less computing time . This

has been shown in the results of test problems.

(3) The effort spent on the programming is also taken into consid-

eration. The piecewise constant approximation is relatively

easy to deal with. In contrast , the shape function and sp line

function approximations are comparably complicated to program.

Therefore, whether a specific nurr~ rical appr oximation is “improved”

or not to any analyst depends on the accuracy needed , computing time

available , and programming efforts .

In Sec. 3. 3, we have posed several test problem. From them,

we can see the follow ing:

(1) From the viewpoint of accuracy, shape function approximation

is much better at the beginning, while

(2) From the viewpoint of convergence speed , spline function ap-

proximation is faster then the other two approximations;

(3) From the viewpoint of comp uting time, it is worth while to

use step function approx imation at f i rs t  if the analyst wants a

- . — _ -. - - -  - -~~~~~~ -- - _ 
~~~~~~- . -~~~~~~~~~~ -- -~~~~~~~~~ - -~~~~~~~~~--
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roug h idea about the solution field .

(4) Accuracy could als o be improved by increasing the number of

Gaussian points see (Append ix 2).

All of these programs were run on an IBM 370 Model 165 computer.

There are further considerations with the dif ferent  approximations.

When we use step function approximation, function value s defined are

those at the centroid of the segment , so we do not have the so-called

“ sharp-corner” problem, where the normal derivative of the potential

function is discontinuous. Howeve r , in the shape function and sp line

function approximation, we do have the sharp-corner problem, because

in these two approximations , function values are defined at the boundary

points of the individual segment, To deal with this in shape funct ion

approximation, it should be remembered that only one unknown can be

found at a nodal point . So if the potential function is an unknown , all

the d i f fe rent  values of its normal derivative should be defined; or if

potential function is defined , then all but one of its normal derivatives

still needs to be defined. The value of the normal derivative can be

determined via the boundary geometry and the potential function dis-

tribution. Take a two-dimensional rectang le as an example, as

shown in Fig. 4. 1,

___________________________________ 
~~~~~~~

-
~~~~~~~~~~~

-
~

- - - 

-
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I-!

~ UI~1
— 

4”_ Q4..~t’($~
lint

_ _x.

Fig. 4.1

where
du2 du

1
U = adn dt

du du
u - ~~~ 

-

= -
~~~~~

- = 0

and t is the tangential direction.

As to the cubic spline function approximation, because of its in-

herent smoothness property , the function to be approximated should be

continuous and have continuous f i rs t  and second derivatives. There-

fore , in dealing w ith the sharp corner problem , we should discard the

periodic spline approximation , and instead we should use the ordinary

spline which end s at these points where discontinuity occured .

There is another way to achieve the smoothness requirement , i.e. ,

to consider the p iecewise Hermitian polynomial, take the piecewise

cubic Herrnites , p(t), for example ,

- -_ - —--- .- - - - -_ -

~ _
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p(t) = V f(t . h .0 (t + f’ (t .)h .1(t) (4. 1)

where f ( t )  is the function to be approx imated , and h .0 (t), h .1(t)

are those cubic Hermitian shape functions which , similar to the La-

grangian shape function , Eq. (3 .2 ), have the following properties:

h . (t .) = 8 . .iO 3 13

h~ (t .) = 0i0 j

h. (t .) = 0
i i  3

h’. (t .) = 5 . .i l j  13

Thus p(t) has the continuity of the f i r s t  derivative of f ( t ) .  Substituting

Eq. (4. 1) int o the two-dimensional boundary-boundary integral equa-

tion and interior-boundary integral equation , we can solve the problem

by procedures similar to those described in Sec. 3. l.A., with the iso-

parametric transformation.  However , t h e  difficulties are two-fold.

(1) It is not always possible to obtain accurate values for the den-

vatives of the known function.

(2) Because the number of the known and unknown functions has

been doubled , the size of the resulted coefficient matrix, [A]

and [B], have been enlarged from N x N to 2N x 2N , where N

is the number of the points where either u or u has been de-

f ined.

Therefore , we did not consider the Hermite Polynomial method in this

-—— . --~- - -  - - - - - _
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thesis , but , if necessary,  it can be implemented readily.

F inally, as is pointed out in the beginning of this chapter , there is

no absolute advantage of any numerical approximation. Therefore , try-

ing to find a ‘tbetter ” appr oximation in order to improve the efficiency

of the BIE method is frequently necessary. Also , it is possib le to

generalize the methods mentioned in this thesis to the boundary value

problems governed by other differential  equations , e .g . ,  Poisson ’ s

equation, and equations which govern irih omogeneous media such as

bodies with inclusions where conditions of continuity at the interface

boundaries need be considered .

-J
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APPENDIX I

CALCULATION OF ELEMENTS OF COEFFICIENT M&TRIX

IN PIECEWISE STEP FUNCTION APPROXIMATION

1. 1 Two-Dimensional Case:

1.1.1 Calculation of a .. :
13

~ log r ( p . , q )  N ?log r ( p .,q )
a .. = 

5B . 
~ ds(q ) 5ki 

k= l 
SB k 

1 ds (q ) (2 .24)

The typical part of right hand side of Eq. (2 .24) is

slog r (p . , q )

5B . 
~ ds(q)

f or which we have two different  conditions , i ~ j and i = j :

(i) ~ ~

Y 
-

_  

7Th
7

rq,t)

Fig. A.l .1
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~~log r ( p . , q)  
- 

slog r ~x 
+ ~~~~~~ -~~~~~-- 

~x ~n ~y ~n

= (cos9cosX + sin9sin)~

cos(9 -~~)

de
ds

where  the angles are as shown in Fig. A. 1. 1. - -

Thus ,
a ,. = d9. = 9 ..

ij ~~~ 1 13 . -

(ii) ~~~~

Fig . A. l, 2

~1og r (p . , q )  ~ 0_ E’ ?log r (p . , q)

B . ~n 
~ ds(q ) = S -  ~n ds(q) +

0 +
s 1E” ~log r(p.,q) s ~log r(p.,q)

+ 
Ss°-E’ 

ds(q) + ~~~~~~ 
3.

since

- -- - - -—- — - - - -— — - - - - _ - --_ _ -—~
_——

I
~

._-

~

. • “ -  
-.
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0 0s -E ’ ~ log r ( p . , q )  s -E ’
lim 5 - ds(q ) u r n  5 — cos(8 - X ) d s ( q )  = 0

E ’-’O S ~n 
E’— O s r 1

~1og r (p . ,q)  s~
lim 5 ~ ds(q)  = lirn 5 — cos(X - 82

)ds(q ) = 0
Ett -.0 s +E” E”-.O s +E” 

r

whe re the ang les in the expressions above are as shown in Fig. A. 1.2.

The sum of these two integrals always has a limit , i .e . ,  0 , no matter

how the E’ and E” tend to zero independently of each other. Thus , by

the definition of the improper integral, we know that

~log r(p.,q) s°-E’ ~log r(p.,q)
ds(q) = lirn 

( S  ~ ds(q)

1

s~ ~,1og r ( p . , q )
+ ds(q))

= 0

Therefore ,

N
a .. -5. . 8. = -rr

ii 
i~~i 

ik

k~ i

1.1. 2 Calculation of b .. :
13

b .. = log r(p .,q)ds(q ) (2 .25)

Again there are two different  conditions , i ~j and i = j:

(i) ~~~~~

— -  _ _ _ _ _ _ _ _ _
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Fig . A .l . 3

I
There are various way s to calculate thi s nonsingular  integral numeri-

cally. We adopt Simpson ’ s rule : 
-

b .. =
~~~~~

‘ [log r (p . , q ) + 4log r (p . ,q °) + log r (p .,q + )]

cf. Fig . A . l . 3 .

(ii) i :j

Fig. A . l .4

— 
~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
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S 5 +

b .. 
~ 

log r ( p . , q ) d s ( q )  
~~~~~~ 

log r ( p . , q ) d s ( q )

+

log r ( p . , q ) ( -d r ( q ) )  + lim 5 log n ( p . , q ) d r ( q )

+

= 2 Jim log r ( p . , q ) d r ( q )

+
= 2 lim [r(p.,q)log r(p,,q) -

r-.0 1 i

= 2[r~
’log r~ - r~ - lim(r log r - r)]

r -.0

+ +
= 2 r (log r - 1)

~ s .
= ~ s .[1og ( —f-) - - ii

cf. Fig. A . l . 4 .

1.1.3. Calculation of k . and k
i i  Zi :

k 1. = 5B . 
~~~~~~~~~~~~~~~~ (2 .31)

k2
~ 

- SB. log r(t ,q)ds(q ) (2 .32)

Since t is not on the boundary, there is no singular case and we can

write the expression for k1. and k2 . directly from A. 1.1.1 (i) and

A. 1.1. 2( i) ,  respectively, i .e .,  

— - -
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k . =
ti

~s. 0
k2. —

~~~~~ [log r ( t ,q ) + 4log r(t,q ) + log r(t,q+)]

See Fig. A . l . 5 .

—

~~~

----
~~~~ ~~

+

7
/ / \\

_ _ _ _  

/ ~~~0N\

/ /
X / /

(

N /
Fig . A .l . 5

1.2 Three-Dimensional  Case:

1.2.1 Calculation of a .. :

~~ ~~ r (p ., q)  da(q ) - 

~ i~~~ 1 
5Bk 

~n r ( p . , q )  da(q ) (2 .36)

The typical part  of the rig ht -hand side of Eq. (2. 36) is

~~~~~ 
r ( p . , q )  da(q)

As before , we consider the i ~ j  and i = j  conditions s ‘parately:

(i)

a
- - - -- - ——— ~~--—~

_-
~— -~~

- -
~~~~

-- -~~~~~~~~~~~~~~~~ ---
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R
L unit vector oc r

1./flit . ‘%orn’~al Vec tar ‘~~

to~~~ DEF 
- 

/

I /

I / /

I

~ 
-

v ~
w ~~~~~~~~

~~~~~~~~~~~~~IIII~~~~~~~~~~~~~~~

F

Fig . A. 1.6

_i_ 1 1 ~~~~ ÷ _ ~
_ _ l ~~~- + - ~- 1

~n r (p . , q )  ~x r (p . , q )  ~n ~y r ( p . , q )  ~n ~z r (p . , q)  ~n

—-- .--- -

~

_- ---~~-~ —- ---- -— - -~~~ --- - - ~~
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~ 1 = - (cos u cos ~ + cos v cos ~ + cos w cos y )
~n r ( p . , q )  r 2

( R ’ n)

cos 6.

See Fig. A . l . 6.

However , it has been noted that

Fig.  A . l . 7

cos 9 = 
da’(q)

and

_L. d9
sa

r 2 
- 

da ’(q)

where da’(q) is a segment surface of the sphere with radius r , cen-

tered at p~, and dS sa is the solid angle confined by the cone p.DEF , See

Fig . A .l . 7.  Thus

— -  — -------—-~~~~~ --—--— - - -—- -_,
~~~ -

_ - --~~~~~~~~ - - -~~~~~~~~~~~~~~~~~~~~



A~ 
1 

- ____

~n r ( p ., q)  - - 

da(q)

and therefore

a .. = - 

5
B . 

dO
sa

~ 9
sa

where

= area of GHI

= 4tan ’
J 

tan~~s.tan *(s - a)~ ta4(s - b)~ tan~ (s - c)

a = L Gp.H

b = L H p. I

c = L. 1~~0

a+b-fc
2

(ii) i = j

Fig. A.l . 8

L
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It can be seen from Fig. A. 1.8 that

5B . ~~ r (p ., q )  da(q) = 

-1 B~ 
r (p . , q )  da(q)

1
+ 
B~ 

~~ r (p . , q )  da(q)

and

~ fl r (p .,q )  da(q) = 
5B~ 

~~ z-i)da(q) = 0

That is to say, no matte r how E approaches zero , the integral over

this plane triangle without the circular area with radius E and center

will always have the same limit , 0. Thus from the definition of

an improper integral we know then

r ~ 1 . r 
_ _ _— da(q) = u r n  — da(q) = 0

~ B . ~~ r (p ., q )  
~~~~~~ B~- ~n r (p . , q )

Therefore, we know that

a..-

1 .2.2 Calculation of b.. :
ii

b .. = ç 1 da(q ) (2 .37)
~ ~ B . 

r (p ., q )
3

(i) i 
~ j

_ _  ~~~~~~~
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I

~~~~~~~ ~~ /~~~~i 1)
Fig . A . l . 9

In spite of considerable recent activity in the field of methods for

evaluating mult iple integrals , the general theory is relatively undevel-

oped. The method used here for  the approximate integrals of functions

over a triangle (cf. Fig. A. 1. 9) is the 64-point , 15th degree triangular,

product Gauss formula [181.

(ii) ~~~~~

Taking a right triangle into consideration, (Fig. A. 1. 10) we know

that 

(
~ a~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1~,o)

Fig. A .l . 10

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - 
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x xtan9
ç !d a = c l  ç 1 1 dydx

~o ‘~
) o 

~~x
2 + y 2

X 
_____  

xtan9
/ 2  2) l~~

=~~~ log(y +~j x + y  0
0

x

= log[tane
1 + secO 1

] 
~~0 

1

= slog(tane
1 + sec81

)

Thus , for an arbitrary triangle (Fig . A. 1.11)

~~~~ /2 1
/

/
\ /

\. i ’

/ \

/

Fig. A.l .11

L _  - ‘ . - - -
~~~~~~~ -

- -
~~~
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~~~ 
= 

SB 
r ( p . , q )  

da(q)

6

=
i~~i 

Srt .~ r(p ., q )  da(q )

= s~~log(tane~~+ secO
k

)

where

5
2k-l 

= 52k k = 1, 2 , 3

1. 2 .3  Calculation of k1. and k2 . :

= 5 ~~~ i’~ .
’

q) da(q ) (2 .39)

k2. = 5B . ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(2 .40)

Fig . A . l . l2

-- - ----

~

-- -- ~~~~~~~~- -----~ —
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Since t is not on the boundary, (cf. Fig . A . 1. 12) there is no singu-

lar case , and we can wri te  the expression for  k 1. directly from

A . 1.2 ., 1 (i).

k . = -

i i  t .
i

and calculate k2 . by the 64-point , 15 degree tr iangular-product Gauss

formula as in A. 1.2. 2(i) .
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APPENDIX II

CALCULATION OF ELEMENTS OF COEFFICIENT MATRIX

IN QUAD RATIC SHAPE FUNCTIO N APPROXIMATION

2 . 1 Two-Dimensional Case:

2 . 1. 1 Calculation of a~ and a’. :
ii

1 slog r (p . ,q .( e ) )
a~

C 
= 5 N~~(e) ~ ~ J (e)de

1 ~~log r ( p . , q . ( e ) )
a~. = 

‘ ~ J(e)de
ij J~~

As in the previous Appendix , we will have two cases to be consid-

ered. (i) p . is not situated within the ~th segment , (neither on the end

point nor on the midpoint of the ~th 
segment , (cf. Fig. A. 2 . 1).

Fig . A.2. l

According to .A.1.1.1 (i ) ,  we know that

-72 - 

-- - - - -_ - .~~~-—--
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slog r ( p . , q )  
-

ds

Therefore , a~ , a~. can be rewrit ten as
13 13

1 dO (e)
a~ = ~ N~ (e) ~ de

ij de

1 dO. . (e)
a’. =
ij de

and

(y .(e) - y(p .))
9 (e) = tan ’ 

(x .(e) - x(p .))

d8..(e) 
— 

y .’(e)(x .(e) - x(p .)) - x’ (e ) (y . ( e )  - y(p .) )

de - 2 2
(x .(e) — x(p.)) + (y.(e) —

Let

dO (e)
F~~ (e) = Na(e) 

~ e

dO .. (e)
G ,(e) = de

we can thus use the rn-point Gaussian çuadrature formula [19] to cal-

culate the integrand numerically as



_____ ~~~~~~~~~~~~~~~ ~~~~ L 3 . f l F~~~~~~~ 
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ina a
a~, = w F .. ( e )

k 13 k

in
a~. V w G ..(e )

‘3 k i j  k
k= 1

where W
k 

is the weight function.

(~.j ) 
~~ 

is s ituated within segment , (cf.  Fig.  A. 2. 2) .

-

-

(~~~~~)
( b )  (~~~~~ )

Fig.  A .2 . 2 .

Let

= a~ -

iJ 13 13 iJ

1 dG..(e)
a ) ij

— (N  (e) - 6 . .  (a) de de

a dB . . (e )
lim (N (e) — S . .( a )~ 

‘~ 
—

13 de
q.(e)-’p.

_ _ _  J
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(N a(e) - 
~~~~ 

)(y~ (e)(x .(e) - x(p.)) - x~ (e)(y.(e) - y (p . ) ) )
lim

(x .(e) - x(pJ)
2 

+ (y .(e )  - y (p .) )
2

0
0

which is an indeterminate form. However , by using 1’ Hopital’ s rule

twice , we found that

d9. . (e)
u rn (N

a(e) - 5~~~ .(&  

~e =

q .( e ) — p .

(Na (e))~t (y 1 (e)(x .(e) — x(p .)) — x’ ( e ) (y . ( e)  — y(p .)) )

2(Na(e)) / (yY(e)(x . ( e )  — x (p .) )  — xY (e) ( y ’ .(e)  — y ( p .) ) )
+ 

D

+ 

(Na(e) — 8..(a) (y ’~(e)x~ (e) — x’~ (e)y~~(e ))

D = 2(( x.(e) - x(p .))x~’ (e) + (x~ (e)) 2 
+ (y .( e)  - y(p ))y”(e) + (y ’ (e))

2 )

Therefore , we know in fact that there is no singularity,  so that we

can calculate a.9t as we did in A. 2 .1.1 (j); i .e . ,  let
13

d O . , ( e )
(e) = (N a(e) - 6

~~
(a)

~ ~~

and

L ~~~~~~~~~~~~~~~~~~~~
-—— ---~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

--
~~~
—--—

~
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-aa .. = ) w
tj 

~~~~ 

k ij k

a
2. 1. 2 Calculation of b .. :

b~ = 5 Na (e) log r ( p . , q . ( e ) ) J ( e ) d e

As before , we have two different  conditions to be handled.

(i )  is not situated wi th in  ~th segment as shown in Fig. A. 2. 1. There

is no possibility to have a s ingular i ty ; therefore  let

(e) = Na(e)log r ( p . , q . ( e ) ) J ( e )

and using the rn-point Gauss ian  quadrature formula , we have

b9t. = 
~~~~

w
k

H
~j ~‘k~

(U) is situated within ~
th segment as shown in Fig. A. 2. 2:

b~ = Na(e)log r ( p . , q . ( e ) ) J ( e ) d e

We have three cases to d iscuss :

(a) Let j ( 1)  i , as shown in Fig . A . 2 .2 (a)

b .. Na(e)log r(p.,q.(e))J(e)de + 5 Na (e)log r ( p ., qj e ) ) J ( e) d e

The second part of the r ig ht-hand side is f ree  of s ingulari ty,  so we

treat it as in A. 2. 1. 2 (i); i. e. , let

- ---~~~~~~~~ — - ---- -~~~~~~~ ---—-~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~
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H~~ (e) = Na(e)log r ( p . , q . ( e ) ) J ( e )

As to the first part , we let

2e = f  - 1

thus, de = 2 f dI

5N
a
(e)log r(p.,q.(e))J(e)de 5 N

a
(e(f))log r(p.,q.(e(f))J(e(f))(-Zf)df 

I
whe re

lirn log r(p., q. (e(f))) . df = lim log f . 
f = 0

q.(f)—p . f-’O
1 1

while Na(e( f ) )  and J ( e ( f ) )  are finit e within the range f E (- 1 , 0);  there-  
-

fore we can let

..a
H.. (f) = N

a
(e(f))log r(p.,q.(e(f)))J(e(f))(-Zf)

ii i i

and u ie  the rn-point  Gaussian quadrature forrnuia

b9~ = 
~~~

wk
(H

~ ~ k~
’ + H~~~ (e

k
))

where f E (- 1 , 0) and e E (0 , 1).

Similarly, we can use the following expression for the other two

cases:
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(b) j ( 2 )  = i , as shown in F ig .  A . 2 . 2  (b).

Let

2
-e f for  e E ( - 1 , 0)

e = g2 for e E (0, 1)

therefore

b~ = 
5

°
N
a
(e(f))log r(p.,q.(e(f)))J(e(f))(-Zf)df

+ 5 N ( ~~~~) ) l0~~~ r(p.,q.(e(g)))J(e(g))(2g)d g

and let

(f) = Na(e(f))log r(p.,q.(e(f)))J(e(f))(-2f)

(g)

Thus

in -

b9t. = 
~~ 

wk
(H .. 

~~~ 
+ ~~~

where f € (-1 , 0) arid g € (0, 1).

(c) j (3 )  = i , as shown in Fig. A .2 . 2 (c).

Let

-e = g
2 

- 1 for e E (0,1)

therefore

— - - .~~~~~--.- -- - -~~~~~~~~~~~~~ 
- -.-
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b .. = 
S l 

Na (e)log r ( p . , q . ( e ) )J (e)de

+ 5 N~ (~~(~~)) lO~ r (p . , q .( e (g ) ) J (e (g ) ) (2 g)d g

and let

H9t. = N
a(e)l og r ( p . , q . ( e ) )J ( e )

= r~.ñe g~~log r ( p . , q . ( e ( g ) ) ) J ( e ( g ) ) ( Z g)

Thus

= 
~~~

wk (H
~ 

(e
k

) + ~~~~~~~

where e E (-1 , 0) and g E (0 , 1).

a a2 . 1.3  Calculatton of k . and k.., . :lj

1 ~log r(t , q . ( e ) )
k~ . = ~ Na(e) ~ J(e)de (3 .13)

H 
lj ~ fl

k2. = Na (e)log r(t ,q (e ) ) J (e )de  (3 . 14) 

-~~~~ _ _ _ _
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.— ‘--. . Q’ 2
-..
-

,-- 

~~~~ 1 ~~~~~~~~~~~~

/fl~~1

Fig . A . 2 . 3

Since t is an interior point , (cf. Fig. A.2 .3) there is no singular

case and we can thus calculate k~~, k~ . by using an rn-point Gaussian

quadrature formula, similar to the procedure described in A .2 . 1.1 (i)

and A.2 . l . 2  (i):

rn
a r ak . > w, F . ( e )l j ~ i c j  k

k= 1

ma ak2 . = L wkH . (e k
)

k= 1

w r e

dO , ( e )
F 9t(e) = Na(e) d

3
e

H~~(e) = Na(e)uog r(t ,q . ( e ) ) J ( e )

~~~- - — _ _ _ _ _ _ _ _ _ _
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and

dG .(e) y~(e)(x .(e) — x(t))  — x’ (e)(y.(e) — y(t ))

de (x .(e) - x(t)) 2 
+ (y .(e)  -

2. 2 Three-Dimensional  Case:

2 .2. 1 Derivation of the parametric representation of boundary sur-

face: Since a surface can be represented in parametric form

by

r(e , f) = x(e , f ) i  + y(e , f ) j  + z(e , f)k

where r(e , f)  is a vector function of two independent real variab les , e

and 1, the so-called parameters or curvilinear coordinates , and is

single-valued and continuous in a simply-connected bounded region of

the e-f plane. tt is found [20] that

da(q(e , f ) )  = J(e , f)de dI

where

3 ( e ,f) = EG - F
2

E = r e  ‘ re

F = r e  ~~~~~~~~f

G = rf rf

Thus

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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J(e , f) = 
~~~ ~~e

Zf 
- Yf Z

e
) 2 

+ (X
e

Z
f 

- x1
z )  + ( x y f 

- xfy )

= [ N~~~
2

+ N ~~~
2 

+ N
2

The unit normal vector of surface concerned , n can be expressed

as

r x r—e
n = ,
— Ir x r

—e -f

N~~ 9 9
J(e,f) .L + J(e ,f) ~~- 

+ J(e ,f)

= n i  + n i  + n k

2. 2.2 Calculation of a a and a’. :

a~ 5~ 5~ 
N
a(e ,f) 

~~ r (p . , q .( e , f ) )  J(e , f)de ~~

S~ S~ ~~ r (p .,q .( e , f ) ) ’~~~~ 
df

The two different cases we considered are , (j ) is not s ituated

within the ~th 
segment, as in Fig. A. 2 .4.

4-

_ _ _ _ _ _  _ _
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c

7YLiS~~~\
L -“ 

‘

I

Fig. A .2 .4

___________ — 1 ~r (p .,q .(e , f ) )

~n r (p .,q . (e , f ) )  — - 

r
2

(p .,q .(e , f))

= - 

r (p .,q .(e ,f ) )  ~(~ (e~f)) - X(P~))n~

+ (y.(q(e , f) )  - Y(P j ))n
y + (z .(g(e , f ) )  — z(p~))ri ~ ]

Let

(e , f )  = Na(e , f)  
~~ r (p . ,q .( e , f ) )  J(e , f)

G ..(e , f)  = 
~~~ r(p.,q.(e,f ) ) ~~~~’~~ 

~~ -- - - _ _ _-
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We can thus use (ml x m2)-point Gaussian quadratic formula to calcu-

late

au., a~ . as
13 13

ml mZ
a ~~~~ a

— a. . = ) w ~ w F . .(e , f )
ii  ~~, k L. 1 13 k 1

k= 1 1=1

a’. .  w
k ~~ 

w
lG ..(e k

, f
l

)

(ii) p. is situated within the ~th 
segment, i. e.,  to be one of the

nodes of the ~th 
segment, either corner points , or midpoints as shown

in Fig. A. 2 .5.

~a)

Fig . A.Z . 5

Let

-a aa ., .  = a . . - a . .
13  13 13

— 

_ 

S~ S~ 
(Na

(e , f) - 8 ij ( a)~ ~~ r (p .,q .(e , f ) )  J(e , f)de ~~

-- -~~~--~~~~~~~~-~~~~~~~~~~~~~ —- --~~~~~~~~~~~~~ ----- - -~~~~~~-- -~~~~~~- ,
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1 1 Dx . .N* + Dy. .N~? + Dz N*
~~~~~~~

. 
= 5 5 (N~ (~~, f) - 6. ) [ - i. j  1 i~ ~ ~~~~ ~ ]de df

ii — l — 1  
i (a ) r (p .,q .(e , f ) )

where

Dx . .  = x .(q(e , f ) )  — x(p.)

Dy . .  = y~(q(e , f ) )  — y(p .)

Dz ..  = z.(q(e ,f ) )  — z(p .)

The two typical cases are shown in Fig. A .2 .5 (a) and (b). We examine

only these two cases; all the other cases can be handled s imilarly.

(a) For region I of Fig. A. 2 . 5 (a),  we can consider the polar

coordinates as in Fig . A .2 .6 .

~~~~~~~~~~~~~~~~~~ III~
Fig . A. 2 .6

Thus

IL - - ----,--.~~~~~~~~~~~~~~~~—



--- - - ,—-----

~ rT Zsec9 (N a(e , f)  - 6 .  .(a)(Dx. .N* + Dy. .N*-a ) ç ii  ij  1 ij  2a
13 I 

~ o ~~ r
2

(p . ,q .( e , f)

+Dz , .N*
‘~~ ~ dr d9

where

e = rcos9 - 1

f = r s i n 9  - 1

and let

-(N (e , f)  - 8. .(a))(Dx . .N* + Dy. .N* + Dz~ .N~~)
Fa (r 0) = 13  13 1 i j  2 ij 3

13 
‘ 2r

1~3

It is found that

0- urn F.. (r,9) = —

13 0r -.0

which is indeterminate. However , by using 1’Hopital’s rule twice we

have

-[ (Na (e , f)  - 8 .  .(a))(Dx . ~N* + Dy. .N* + Dz .. N*]’t
lim ~9t (r , B) = lim ii ‘3  1 ,j  2 ,j 3

13 2r -.O r—O

where the limit of the numerator part will be some finite number .

Therefore , we know that there is no singularity, thus

- 

~~~~~ 
= w

k ~~ ~~~~~ (r
k~ O l~ 

- - - - - — - -  - —
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where  r E (0 , 2sec8) and B E (o , -~~r~- ) .  Similar ly, we can conc lud e that

ml m2

~ I~~II 
= w~ F~ (r~~,9~~)

k= 1 1= 1

where  r € (O , 2csc O)  and 9 E (~~rr,~~11); so

-a -a -aa . .  = ( a .) + (a . . )
13 1 3 I ij  II

(b) Similarly, by considering polar coordinates , for  region I of Fig.

A . 2.5  (b), we have

— l
tan (2)  sec9

(~~.)  = - 5 c ~~~ (r , 9 ) d r d9i j l  
0 ~o ‘~~

where (r , B ) is defined as in (a),  but here we have

e = rcos9

f = r s i n 9 - 1

Similar to the procedure in (a),  we can have

ml m2
-a r ~~

- -a(a . . ) 1 L wk L w
1 

F. .  (r
k ,B l

)

k= 1 1=1

where r E (O , secB) and B E (0 , tan
1(2)) .

Also , we can have (~ 9t) and ( a9t.) in the same form , except
1) II 13 III

r € (0 , 2cscB) ,  9 E (tan 1(2) , -~- - tan (2))  for  region I

r € (0 , - secO) ,  B E (~r - tan ’(2), -rr) for  region II

then we can get

--- -— — —---——- ---- — — - . - r~~~ - ~~~~~ -- fl!r -S~~ --~-—-----
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-a -a -a -aa . . = (a. . )  + (a . . )  + (a . .)
ij  i j l i j Il i j ill

a2 . 2 . 3  Calculation of b .
‘3

b9t. = 

~ 
N~~~ , f) r ( p . ,q .( e , f ) )  3 ( e)  de dI

The two different cases wiU be

(i) p . is not situated within ~
th 

segment , as shown in Fig . A .2 .4. Let

H~ .(e , f)  = Na(e,f )  
r(p.,~~.(e,f) ) 3( e)

and we thus have

b9t. = w k ~~ w lH9t.(ek , f
l

)

(ii) p. is situated within ~~~ segment , as shown in Fig . A. 2. 5. As in

2.2.2, we just consider the typical ca se , Fig. A.5(a) and (b).

(a) By cons idering the polar coordinates for  region I as shown in

Fig. A.2.6 we have

.
~ 

2se c9
(b9t.) = 5 Na(e ,f ) J ( e ,f) dr dOi j l  

~~~ 0

where

e = rcos$ - 1

f = rsin9 - 1

Let
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H~~.(r , 9 )  = Na(e , f )J ( e , f )

It is obvious that H~~. is free of singularity, therefore

(b. 9 t)  = ‘
~~k ~~~ 

w
l
H
~
.(r

k
.9

l
)

where  r E (0 , 2 sec9)  and B € (0 , -~r~).

Similarly, (b~ .)11 has the same form as (ba )
1
, except that r E (0 , 2csaB ),

O € (*ii,~~~~~
), and thus

b9t. = (b9 t .)  + (b9t. )13 13 I 13 II

(b) Similar to the procedure described in (a) , we have

b
9t
. = (b9t.) + (b

9t
.) + (b9t.)

i j  ijl ij  II 13 III

where (b
a
~ 1

, (b~ .) and (b~~)
111 

have the same form as sh~vn in (a),

except that

e = r c o s 9

f=rsin 9 - 1

and

r E (0,sec9), B E (O , tan~~~(2~~ for region I

r € (0 , Z csc9) , B E (tan~~~(2 ) , 1~T- - tan~~~(2) )  for  region II

r € (0 , -secO) , B € ~ - tan 
1
(2), -rr) for reg ion III

_ _ _ _ _ _ _ _  __ _ _
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a2 .2 .4 Calculat ion of k . and k

= 
s

~ 1 5
’ Na(e , f )~~~ r( t , q .(e , f ) )  J(e , f)  de df

k~. = 5 N
a
(e,f )  r ( t ,q.(e,f ) )  J(e,f )  de df

/ / ~~~~

—

~~
- 

~~~
—4_---I --

-
~~~~ \

I~~~~~i~i — / —

Fig . A .2 . 7

Since t is an interior  point , (cf. Fig.  A . 2 . 7 )  t~ ere  is no s ingular

case. We can thus calculate k~ ., k~ ., by using (ml x rn2) -point Gaus-

sian quadrature  formula , as in t ’~ose procedures described in A. 2 . 2 .2

(i) and A. 2 .2 . 3 ( i ) ;  i .e .

k1. =
~: 

W
k ~~ 

w l
F.( e k

, f
l

)

k2 . =
~~~ 

W
k ~~ 

w l
H

~~
(e

k , f
l

)

where

~~~~~

---- -
- 

~~
-- --- - -- .—- -— - - - -
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F. (e , f) = N (e , f) 
~~ r(t ,q.(e ,f)) J(e , f)

a 1H . (e , f) = N (e ,f) r(t ,q.(e ,f) J(e , f)

and

1 
~ 

J(e ,f) = — 
1 [(x .( q(e ,f))  — x(t))ri +

~n r~ ,q.(e , ) r (t ,q~(e,f)) ~ X

(y.(q(e , f))  — y(t))n + (z .( q(e ,f))  — z(t))n ] 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



APPENDIX III

CALCULATION OF ELEMENTS OF COEFFICIENT MATRIX

IN CUBIC SPLINE FUNCTION APPROXIMATION

3. 1 Calculation of i..:
13

- B (s - s.) ~Iog r(p.,q(s))
. 2 ds

• 3

- ç B (s - s.) slog r(p .,q(s))
1 ds

- B2 (s . - a) ~1og r(p .,q(s))  
da

- 

SB . 
B 1(s. - s) ~ 1og r(p .,q(s))  

(3.33)
j -2

There are various ways to calculate these integrals numerically. One

convenient way for the general case which we will illustrate is to adopt the

parametric transformation of geometrical coordinates , i.e. , to approxi-

mate each of the two groups , (B ., B . 1 ) and (B . 2 , B . 1 ) in the expression

of 
~~~~~

, as we did in Chapter 3. l.A. (Consequently we should divide each

closed boundary into an even number of intervals to carry out this kind of

approximation. See Figures A. 3.1 and A. 3.2.)
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“.5

Fig. A.3.1

Taking group I(B.,B.1 ) as an example,

0 d8~ .(e)

~~~~~~~~~ 
= - 5~ 

B2
(s(e) - s.) ~ de

1 d8 ..(e)
- 5 B 1( s(e) - s~) de

where

(s(e) - s .) 
~

h

(s(e) - s .) 
~~ 

(s(e) - s~) 
~

B
2

(s(e) - s.) = (2 — h ~ - 4(1 — h

s(e) - 5 . = S_ l  J(e)de

= 

~ J 
dNU(eL x~

2 
+ 

dN (e) ~a) de

= 11 (Zce + b) + be + a + 4 a c - b
2

I~ 2 
(b_ 2c)

J~~
-b + a

x log(Z 4 c(ce + be + a) + 2cc + b)] - 4c

+ ~~~~~~~~ log(Z Jc(c - b + a )  - 2c + b) ]

L _ _ _  

____________________________
—- - - -~ - - _________ - ------•-- -— —--—~~~ —•— ——--~-- — —-- -j-- —j  -- . --- —- -•-~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ 

—•-•.
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3 12 3 12a :~~r (x - x )  +(y - y )  ]
1 3 2 3 1 1 3 2 3b=(x + x -2x)(x -x)+(y +y -Zy )(y - y )

1 3 22 1 3 22
c=(x +x -2x ) +(y +y -2y )

Then we can calculate (
~~ .) in the manner shown in A. 2. 1. 1 for both theijl

nonsingular and singular cases. Similarly, we can express (~~~. . )~~~ 
in the

1 13

same way, except where 5 . - s(e) = 
5e 

j~~ de, and

+
13 ij l 13 11

3.2 Calculation of b..:
1)

b ,. = - 

~B . 
B2 (s — silogr(p.,q(s ) )ds

- 

SB~~1 
B1(s - s.)logr(p .,q(s))ds

- 

5B. 
B2(s. 

- s)logr(p.,q(s))ds
j— 1

- SB . B
1
(s. - s)logr(p.,q(s))ds (3.34)

3-2

Still taking two groups (B.
~
B.+i

) and (B. 29B. i~ 
as in A.3. 1 and Fig

A. 3. 1 into consideration, we thus have

(b..)1 
= - 5-~ 

B2(s(e) 
- s.)logr(p.,q(e))J(e)de

- 5 B
1
(s(e) - s.)logr(p.,q(e)J(e)de
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where s(e) - 5 . is defined in A.3. 1.

•1.1

cc,,

r g )

1.

Fig. A.3.2

Without consideration of singular cases , k1. and Ic2. can be calculated by

the same procedures described in A.3.l and A.3.2 respectively. By using

a procedure similar to that described in A.2. 1.2, we can calculate (b..)1

for both the nonsingular and singular cases. Then by combination as be-

fore, we have

b
1~ 

= (b..)1 + ~~ij~n

I I

— --- - - - - - - -  —-- —~~~~ .— -~ - - - -— —~~ —-‘~~ - .~-----—-- -- -• - -— ~ — —•——— - -•—•-- ----~~~~-- —— -•-—---‘•—--— -•--- ——- -_- —-•-
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3.3 Calculation of k . and k.~.:lj

k1. = 

~~ 

B2 (a - a) 
slog r(t ,q( a ) )  ds

+ 5B3+i 
B 1(s - a )  ~1og r(t,g(s)) da

+ 

~~~~~~~~~~~~ 

B
2(s~ 

- ~ ~log r(t,g(s)) ds

+ 
~~~~~ ••~~~~~~ 

B~ (s~ - s) 
~~~~~~~~~~~~~~~ ds (3.38)

ic = 
5B. 

B2(s 
- s~)log r(t,q( s))da

+ ~~~~~ B 1(s — s.)log r(t , q ( s) ) d s
3

+ 5B . B2 (s . - s)log r(t ,q(s))ds
j — l

+ 
5B. 

B
1

(s. - s)log r(t,q(s))ds (3.39)
3-2

L _
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